

Resistance of southern montane heathlands to different nitrogen loads

Elena Marcos, Javier Calvo-Fernández, Ángela Taboada, Andreas Fichtner, Werner Härdtle, Leonor Calvo

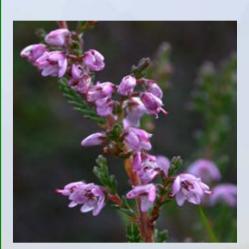

* Area of Ecology. Faculty of Biological and Environmental Sciences. University of León. 24071 León. Spain

INTRODUCTION

STUDY AREA

Elevated nitrogen (N) inputs into terrestrial ecosystems generally cause harmful effects to the ecosystems' health. Particularly, those adapted to low levels of N availability, such as montane heathlands, are more vulnerable to increased N inputs. Furthermore, the life-cycle stage of the heathland vegetation might influence its susceptibility to N loading. The N critical load is a valuable tool to assess the heathland resistance to changes in N availability.

In this study we established, based on empirical evidences, the N critical load for montane heathlands located at their southern-most distribution area, in relation to Calluna vulgaris heathland life-cycle stages: young- and mature-phase.


Distribution of Calluna vulgaris in Europe

Soils are Umbrisols developed over shales and sandstones (San Isidro) and quartzite rocks (Riopinos I and Riopinos II). Vegetation is dominated by Calluna vulgaris. N background deposition has been calculated in 4.6 kg N ha⁻¹ yr⁻¹.

METHODOLOGY

In each plot (2x 2 m) we measured plant and soil response variables during 2015

Vegetation response variables: species cover (Calluna vulgaris, Erica tetralix, Vaccinium myrtillus, Cetraria sp., Cladonia sp.); life form cover (annual and

In 2013, in each of the three study sites (SI, RPI and RPII), we selected two heathland stands of different ages: (1) young stands (8 years) and (2) mature stands (>40 years). Nine replicate plots (2x2 m) per treatment were established (three per study site) for each age. Plots received 0 (natural deposition; C), 10 (N₁₀), 20 (N₂₀) and 50 (N_{50}) kg N ha⁻¹ yr⁻¹ as NH₄NO₃ during two years.

Experimental plots

Vegetation cover sampling

perennial forbs, annual and perennial graminoids, woody, bryophytes, and lichens); plant species richness; Calluna flowering; current year's Calluna shoot length; Calluna shoot N and P contents, and N:P ratios.

Calluna shoot

Soil response variables: litter N and P contents, N:P ratios; extractable NH_4^+ and NO_3^- ; total N; soil organic C; available P; microbial biomass N and C, C:N ratio; enzymatic activities (acid phosphatase, urease, and β -glucosidase).

Estimation of N critical load


* One way ANOVA including treatment as fixed factor

* N critical load: the lowest N treatment (N₁₀, N₂₀ and N₅₀) at which the response variable showed a significant change with respect to the control treatment (N_0).

	N treatment						
		N10	N20	N50	p-value		
Young heathlands	No. flowers	ns	个 ***	^ ***	0.000		
	Calluna shoot length	ns	ns	^ ***	0.000		
	<i>Calluna</i> shoot N content	个 ***	个 ***	^ ***	0.000		
	Litter N	ns	ns	^ **	0.005		
	Calluna N:P ratio	ns	个 **	^ ***	0.000		
	NH4 ⁺	ns	ns	↑ *	0.028		

RESULTS

A significant increase in shoot N content was found at N₁₀ treatment in young heathlands. It was necessary a higher N load (N₂₀) to detect changes in *Calluna* vital rates (flowering, growth), and soil variables (litter N content and soil ammonium). However, in mature stands a significant increase was found at N₁₀ treatment in Calluna vital rates (flowering and growth) and Calluna chemistry (shoot N content). Changes in soil variables (ammonium and microbial C:N ratio) were only found at N₅₀ treatment. No changes were found in species composition and richness

View of flowering of mature stands in Riopinos I

Conclusions

The current N critical loads in montane heathlands are established within the range 10-20 kg N ha⁻¹ yr⁻¹ for young and mature stands. However, the effects of higher N availability were different depending of growth phase. Mature heathlands showed more sensitivity to low N input that young ones. The main indicators of the impact of higher N inputs were: *Calluna* flowering, growth and shoot N content.

N treatment

		N10	N20	N50	p-value
	No. flowers	个 * **	个 * **	^ ***	0.000
	Calluna shoot length	^ ***	个 * **	^ ***	0.000
	<i>Calluna</i> shoot N content	个 **	个 * *	^ ***	0.000
	Calluna N:P ratio	ns	^ *	^ *	0.011
	Microbial C:N ratio	ns	ns	↓ **	0.034

Direction of response (*†* increased or *↓* decreased) and significance level [*** (p < 0.001), ** (0.01 > p > 0.001), * (0.05 > p > 0.01), and ns (p > 0.05)] of different N treatments (N10, N20 and N50) respect to the control N treatment (N0). Significance level of 'N treatment' effect for each response variable is presented as p-value.

This study has been supported by the following projects: CGL2006-10998-C02-01 from Ministerio de Educación y Ciencia y LE039A05 from Junta de Castilla y León